Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
EMBO J ; 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38605226

ABSTRACT

Prenatal lethality associated with mouse knockout of Mettl16, a recently identified RNA N6-methyladenosine (m6A) methyltransferase, has hampered characterization of the essential role of METTL16-mediated RNA m6A modification in early embryonic development. Here, using cross-species single-cell RNA sequencing analysis, we found that during early embryonic development, METTL16 is more highly expressed in vertebrate hematopoietic stem and progenitor cells (HSPCs) than other methyltransferases. In Mettl16-deficient zebrafish, proliferation capacity of embryonic HSPCs is compromised due to G1/S cell cycle arrest, an effect whose rescue requires Mettl16 with intact methyltransferase activity. We further identify the cell-cycle transcription factor mybl2b as a directly regulated by Mettl16-mediated m6A modification. Mettl16 deficiency resulted in the destabilization of mybl2b mRNA, likely due to lost binding by the m6A reader Igf2bp1 in vivo. Moreover, we found that the METTL16-m6A-MYBL2-IGF2BP1 axis controlling G1/S progression is conserved in humans. Collectively, our findings elucidate the critical function of METTL16-mediated m6A modification in HSPC cell cycle progression during early embryonic development.

2.
Pestic Biochem Physiol ; 147: 67-74, 2018 May.
Article in English | MEDLINE | ID: mdl-29933995

ABSTRACT

Dendrobium nobile (D. nobile) is a valuable Chinese herbal medicine. The discovery of microbial resources from has provided a wealth of raw materials. Stalk rot, which is caused by Pestalotiopsis, is one of the most serious diseases of D nobile and has resulted in serious losses in production. However, an effective method for the prevention and control of stalk rot remains lacking. In this study, we aimed to identify a biocontrol strain against Pestalotiopsis. We isolated Paenibacillus polymyxa Y-1, an endophytic bacterium, from the stem of D. nobile. Three pairs of active metabolites isolated from this bacterium were identified as fusaricidin compounds. We then investigated the mechanism of fusaricidin compounds on Pestalotiopsis via proteomics. Proteomics data showed that the compounds mainly inhibit energy generation in the respiratory chain and amino acid biosynthesis of Pestalotiopsis.


Subject(s)
Antifungal Agents/chemistry , Antifungal Agents/pharmacology , Ascomycota/drug effects , Bacterial Proteins/chemistry , Bacterial Proteins/pharmacology , Dendrobium/microbiology , Paenibacillus polymyxa/metabolism , Amino Acids/biosynthesis , Ascomycota/genetics , Ascomycota/growth & development , Ascomycota/metabolism , China , DNA, Fungal/drug effects , DNA, Fungal/genetics , Electron Transport/drug effects , Energy Metabolism/drug effects , Plant Diseases/microbiology , Plant Diseases/prevention & control , Proteomics , Reverse Transcriptase Polymerase Chain Reaction , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...